Segmentation tumorale par consensus : A propos de quelques propriétés étudiées dans deux populations tumorales distinctes

T. Carlier 1,2 C. Haumont 1 C. Bailly 1,2 C. Bodet-Milin 1,2 C. Ansquer 1,2 F. Kraeber-Bodéré 1,2

¹Service de Médecine Nucléaire, CHU Nantes, Nantes

²CRCINA, INSERM UMR 1232, CNRS ERL 6001, Nantes

- Objectifs
 - Matériels et méthodes
 - Approches par consensus
 - Patients
 - Segmentation
 - Analyse
- Résultats
- **5** Discussion Conclusion

- Rationnel
- Objectifs
- Matériels et méthodes
- 4 Résultats
- **Discussion Conclusion**

Introduction

Rationnel

 Utilité de la segmentation tumorale à partir des images TEP (Hatt et al, Med Phys 2017)

- Utilité de la segmentation tumorale à partir des images TEP (Hatt et al, Med Phys 2017)
 - Information prédictive et pronostique : biomarqueur (Houshmand et al, **PET Clin 2015)**

- Utilité de la segmentation tumorale à partir des images TEP (Hatt et al, Med Phys 2017)
 - Information prédictive et pronostique : biomarqueur (Houshmand et al, PET Clin 2015)
 - Définition des volumes cibles en radiothérapie externe (Grégoire et al, J Nucl Med 2007)

- Utilité de la segmentation tumorale à partir des images TEP (Hatt et al, Med Phys 2017)
 - Information prédictive et pronostique : biomarqueur (Houshmand et al., PET Clin 2015)
 - Définition des volumes cibles en radiothérapie externe (Grégoire et al., J Nucl Med 2007)
- Très nombreuses méthodes publiées avec chacune des avantages et des limites dépendant notamment

- Utilité de la segmentation tumorale à partir des images TEP (Hatt et al, Med Phys 2017)
 - Information prédictive et pronostique : biomarqueur (Houshmand et al., PET Clin 2015)
 - Définition des volumes cibles en radiothérapie externe (Grégoire et al., J Nucl Med 2007)
- Très nombreuses méthodes publiées avec chacune des avantages et des limites dépendant notamment
 - Rapport signal-sur-bruit

- Utilité de la segmentation tumorale à partir des images TEP (Hatt et al, Med Phys 2017)
 - Information prédictive et pronostique : biomarqueur (Houshmand et al., PET Clin 2015)
 - Définition des volumes cibles en radiothérapie externe (Grégoire et al., J Nucl Med 2007)
- Très nombreuses méthodes publiées avec chacune des avantages et des limites dépendant notamment
 - Rapport signal-sur-bruit
 - Échantillonnage et effet de volume partiel

- Utilité de la segmentation tumorale à partir des images TEP (Hatt et al, Med Phys 2017)
 - Information prédictive et pronostique : biomarqueur (Houshmand et al., PET Clin 2015)
 - Définition des volumes cibles en radiothérapie externe (Grégoire et al., J Nucl Med 2007)
- Très nombreuses méthodes publiées avec chacune des avantages et des limites dépendant notamment
 - Rapport signal-sur-bruit
 - Échantillonnage et effet de volume partiel
 - Gradient de fixation et forme

Introduction

- Utilité de la segmentation tumorale à partir des images TEP (Hatt et al, Med Phys 2017)
 - Information prédictive et pronostique : biomarqueur (Houshmand et al, PET Clin 2015)
 - ② Définition des volumes cibles en radiothérapie externe (Grégoire et al, J Nucl Med 2007)
- Très nombreuses méthodes publiées avec chacune des avantages et des limites dépendant notamment
 - Rapport signal-sur-bruit
 - Échantillonnage et effet de volume partiel
 - Gradient de fixation et forme
- Application récente en TEP d'approches par consensus essayant de combiner plusieurs méthodes en une seule (McGurk et al, Med Phys 2013)

Introduction

- Utilité de la segmentation tumorale à partir des images TEP (Hatt et al, Med Phys 2017)
 - Information prédictive et pronostique : biomarqueur (Houshmand et al, PET Clin 2015)
 - ② Définition des volumes cibles en radiothérapie externe (Grégoire et al, J Nucl Med 2007)
- Très nombreuses méthodes publiées avec chacune des avantages et des limites dépendant notamment
 - Rapport signal-sur-bruit
 - Échantillonnage et effet de volume partiel
 - Gradient de fixation et forme
- Application récente en TEP d'approches par consensus essayant de combiner plusieurs méthodes en une seule (McGurk et al, Med Phys 2013)
- Première évaluation clinique récemment publiée (Schaefer et al, Eur J Nucl Med Mol Imaging 2016)

Objectifs

- Rationne
- Objectifs
- Matériels et méthodes
- A Résultats
- **Discussion Conclusion**

Objectifs

• Évaluer l'impact du nombre de méthodes de segmentation impliquées dans le calcul des approches par consensus

Objectifs

- Évaluer l'impact du nombre de méthodes de segmentation impliquées dans le calcul des approches par consensus
- Confirmer si un vote à majorité simple (MV) et la méthode STAPLE (Simultaneous Truth And Performance Level Estimation) procurent des performances identiques

Matériels et méthodes

- Rationne
- Objectifs
- Matériels et méthodes
 - Approches par consensus
 - Patients
 - Segmentation
 - Analyse
- Résultats
- **5** Discussion Conclusion

- ullet $voxel \in$ lésion si $voxel \in$ majorité des méthodes de segmentation
- Pour chaque voxel, N décisions si N méthodes de segmentation
- Choix si Prob(voxel) > 0,5

- ullet $voxel \in$ lésion si $voxel \in$ majorité des méthodes de segmentation
- Pour chaque voxel, N décisions si N méthodes de segmentation
- Choix si Prob(voxel) > 0,5

STAPLE (Warfield et al, IEEE Trans Med Imaging 2004)

Méthode dérivée de l'algorithme EM (Expectation Maximization)

- voxel ∈ lésion si voxel ∈ majorité des méthodes de segmentation
- Pour chaque voxel, N décisions si N méthodes de segmentation
- Choix si Prob(voxel) > 0.5

- Méthode dérivée de l'algorithme EM (Expectation Maximization)
- A partir de différentes segmentations, STAPLE retourne une carte de probabilité qui estime la vraisemblance de chaque voxel d'appartenir à la lésion

- voxel ∈ lésion si voxel ∈ majorité des méthodes de segmentation
- Pour chaque voxel, N décisions si N méthodes de segmentation
- Choix si Prob(voxel) > 0,5

- Méthode dérivée de l'algorithme EM (Expectation Maximization)
- A partir de différentes segmentations, STAPLE retourne une carte de probabilité qui estime la vraisemblance de chaque voxel d'appartenir à la lésion
- Mesure conjointe de la performance de chaque segmentation en entrée

- voxel ∈ lésion si voxel ∈ majorité des méthodes de segmentation
- Pour chaque voxel, N décisions si N méthodes de segmentation
- Choix si Prob(voxel) > 0,5

- Méthode dérivée de l'algorithme EM (Expectation Maximization)
- A partir de différentes segmentations, STAPLE retourne une carte de probabilité qui estime la vraisemblance de chaque voxel d'appartenir à la lésion
- Mesure conjointe de la performance de chaque segmentation en entrée
- Paramètres fixés à leurs valeurs par défaut

- voxel ∈ lésion si voxel ∈ majorité des méthodes de segmentation
- Pour chaque *voxel*, N décisions si N méthodes de segmentation
- Choix si Prob(voxel) > 0,5

- Méthode dérivée de l'algorithme EM (Expectation Maximization)
- A partir de différentes segmentations, STAPLE retourne une carte de probabilité qui estime la vraisemblance de chaque voxel d'appartenir à la lésion
- Mesure conjointe de la performance de chaque segmentation en entrée
- Paramètres fixés à leurs valeurs par défaut
- Pas de régularisation (MAP) ni de contrainte d'homogénéité spatiale (champ de Markov)

Étude conduite rétrospectivement à partir de deux cohortes

42 patients porteurs de phéochromocytome ayant bénéficié d'une TEP au ¹⁸FDG au diagnostic avant chirurgie

Étude conduite rétrospectivement à partir de deux cohortes

- 42 patients porteurs de phéochromocytome ayant bénéficié d'une TEP au ¹⁸FDG au diagnostic avant chirurgie
- 61 enfants atteints d'ostéosarcome ou de sarcome d'Ewing ayant bénéficié d'une TEP au ¹⁸FDG avant prise en charge thérapeutique

Étude conduite rétrospectivement à partir de deux cohortes

- 42 patients porteurs de phéochromocytome ayant bénéficié d'une TEP au ¹⁸FDG au diagnostic avant chirurgie
- 61 enfants atteints d'ostéosarcome ou de sarcome d'Ewing ayant bénéficié d'une TEP au ¹⁸FDG avant prise en charge thérapeutique

Étude conduite rétrospectivement à partir de deux cohortes

- 42 patients porteurs de phéochromocytome ayant bénéficié d'une TEP au ¹⁸FDG au diagnostic avant chirurgie
- 61 enfants atteints d'ostéosarcome ou de sarcome d'Ewing ayant bénéficié d'une TEP au ¹⁸FDG avant prise en charge thérapeutique

Lésions tumorales

- Phéochromocytome : 47 lésions extraites avec mesure de la taille maximale de la pièce anatomo-pathologique
- Sarcome pédiatrique : 63 lésions primitives

- Méthode SUV 40%
- 2 Méthode adaptative 1 (Vauclin et al, Phys Med Biol 2009)
- Méthode adaptative 2 (Nestle et al, Eur J Nucl Med Mol Imaging 2007)
- Méthode par classification k-means (Forgy et al, Biometrics 1965)
- Méthode SUV 2.5

Premier objectif (influence du nombre de méthodes de segmentation sur les résultats des approches par consensus)

- Premier objectif (influence du nombre de méthodes de segmentation sur les résultats des approches par consensus)
 - Cohorte des patients atteints de phéochromocytome

- Premier objectif (influence du nombre de méthodes de segmentation sur les résultats des approches par consensus)
 - Cohorte des patients atteints de phéochromocytome
 - Calcul de la taille maximale par imagerie et comparaison par classement (tenant compte de l'incertitude de mesure) à celle mesurée par anatomo-pathologie

- Premier objectif (influence du nombre de méthodes de segmentation sur les résultats des approches par consensus)
 - Cohorte des patients atteints de phéochromocytome
 - Calcul de la taille maximale par imagerie et comparaison par classement (tenant compte de l'incertitude de mesure) à celle mesurée par anatomo-pathologie
- Deuxième objectif (différence entre MV et STAPLE)

Premier objectif (influence du nombre de méthodes de segmentation sur les résultats des approches par consensus)

- Cohorte des patients atteints de phéochromocytome
- Calcul de la taille maximale par imagerie et comparaison par classement (tenant compte de l'incertitude de mesure) à celle mesurée par anatomo-pathologie
- Deuxième objectif (différence entre MV et STAPLE)
 - Cohorte des patients atteints de phéochromocytome + sarcome pédiatrique : 110 lésions

Premier objectif (influence du nombre de méthodes de segmenta-

• Cohorte des patients atteints de phéochromocytome

tion sur les résultats des approches par consensus)

- Calcul de la taille maximale par imagerie et comparaison par classement (tenant compte de l'incertitude de mesure) à celle mesurée par anatomo-pathologie
- Deuxième objectif (différence entre MV et STAPLE)
 - Cohorte des patients atteints de phéochromocytome + sarcome pédiatrique : 110 lésions
 - Différence évaluée par modèle mixte linéaire corrigé pour comparaison multiple (Benjamini-Hochberg)

- Premier objectif (influence du nombre de méthodes de segmentation sur les résultats des approches par consensus)
 - Cohorte des patients atteints de phéochromocytome
 - Calcul de la taille maximale par imagerie et comparaison par classement (tenant compte de l'incertitude de mesure) à celle mesurée par anatomo-pathologie
- Deuxième objectif (différence entre MV et STAPLE)
 - Cohorte des patients atteints de phéochromocytome + sarcome pédiatrique : 110 lésions
 - Différence évaluée par modèle mixte linéaire corrigé pour comparaison multiple (Benjamini-Hochberg)
 - Utilisation de R 3.2.5

Résultats

- Rationne
- Objectifs
- Matériels et méthodes
- 4 Résultats
- **Discussion Conclusion**

Premier objectif: exemple

Maximum distance error

32.3 mm

7.8 mm

8.8 mm

8.8 mm

7.0 mm

1.0 mm

12.1 mm

7.0 mm

Approche

$$N = 3 *$$

$$N = 4$$

$$N = 5$$

*N méthodes de segmentation en données d'entrée pour STAPLE et MV

^{*(}k fois classées comme la meilleure ; m fois classées comme la moins bonne)

MV

$$N = 4$$
 $N = 5$ (23; 0) (18; 0)

(18;0)

Résultats

(22;0) (16;0)

*(k fois classées comme la meilleure ; m fois classées comme la moins bonne)

Approche	N=3	N = 4	N = 5
STAPLE	(26 ; 0) *	(23;0)	(18;0)
MV	(22;0)	(16;0)	(18;0)
SUV 40%	(17; 14)	(16; 14)	(16:9)

^{*(}k fois classées comme la meilleure ; m fois classées comme la moins bonne)

Approche	N=3	N = 4	N = 5
STAPLE	(26;0)*	(23;0)	(18;0)
MV	(22;0)	(16;0)	(18;0)
SUV 40%	(17; 14)	(16; 14)	(16;9)
Adaptative 1	(27;3)	(24;3)	(22;1)

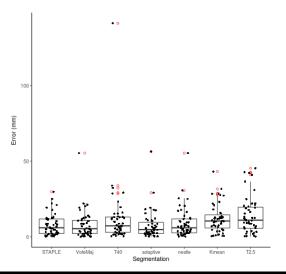
^{*(}k fois classées comme la meilleure ; m fois classées comme la moins bonne)

^{*(}k fois classées comme la meilleure ; m fois classées comme la moins bonne)

^{*(}k fois classées comme la meilleure; m fois classées comme la moins bonne)

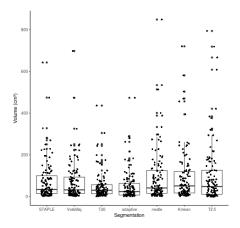
Approche	N = 3	N = 4	N = 5
STAPLE	(26;0)*	(23;0)	(18;0)
MV	(22;0)	(16;0)	(18;0)
SUV 40%	(17; 14)	(16; 14)	(16; 9)
Adaptative 1	(27;3)	(24;3)	(22;1)
k-means	(12;23)	(12;23)	(10; 18)
Adaptative 2	-	(22;2)	(21;0)
SUV 2.5	-	-	(12; 16)

^{*(}k fois classées comme la meilleure ; m fois classées comme la moins bonne)


Approche	N = 3	N = 4	N = 5
STAPLE	(26;0)*	(23;0)	(18;0)
MV	(22;0)	(16;0)	(18;0)
SUV 40%	(17; 14)	(16; 14)	(16;9)
Adaptative 1	(27;3)	(24;3)	(22;1)
k-means	(12;23)	(12;23)	(10; 18)
Adaptative 2	-	(22;2)	(21;0)
SUV 2.5	-	-	(12; 16)

^{*(}k fois classées comme la meilleure ; m fois classées comme la moins bonne)

- STAPLE et MV classée comme étant les "meilleures" méthodes dans plus de 40% des cas
- Pas d'impact du nombre de méthodes de segmentation en données d'entrée



Distribution des erreurs (en utilisant 5 méthodes de segmentation en données d'entrée) pour 47 lésions

Distribution des volumes (en utilisant 5 méthodes de segmentation en données d'entrée) pour 110 lésions

 STAPLE et MV donnent des volumes identiques quel que soit le nombre de méthodes de segmentation en données d'entrée

Discussion - Conclusion

- Rationne
- Objectifs
- Matériels et méthodes
- 4 Résultats
- **5** Discussion Conclusion

Discussion - conclusion

• STAPLE et MV semblent pouvoir être utilisées quelque soit le nombre de méthodes de segmentation en entrée

Rationnel

Discussion - Conclusion

- STAPLE et MV semblent pouvoir être utilisées quelque soit le nombre de méthodes de segmentation en entrée
 - Mais le "gold standard" utilisé dans cette étude perfectible

Discussion - conclusion

- STAPLE et MV semblent pouvoir être utilisées quelque soit le nombre de méthodes de segmentation en entrée
 - Mais le "gold standard" utilisé dans cette étude perfectible
- STAPLE et MV semblent donner les performances optimales pour la majorité des lésions considérées dans cette étude

- STAPLE et MV semblent pouvoir être utilisées quelque soit le nombre de méthodes de segmentation en entrée
 - Mais le "gold standard" utilisé dans cette étude perfectible
- STAPLE et MV semblent donner les performances optimales pour la majorité des lésions considérées dans cette étude
 - Mais le "gold standard" utilisé dans cette étude perfectible

- STAPLE et MV semblent pouvoir être utilisées quelque soit le nombre de méthodes de segmentation en entrée
 - Mais le "gold standard" utilisé dans cette étude perfectible
- STAPLE et MV semblent donner les performances optimales pour la majorité des lésions considérées dans cette étude
 - Mais le "gold standard" utilisé dans cette étude perfectible
- Les approches STAPLE et MV donnent des résultats (en terme d'estimation de volume) similaires

Discussion - conclusion

- STAPLE et MV semblent pouvoir être utilisées quelque soit le nombre de méthodes de segmentation en entrée
 - Mais le "gold standard" utilisé dans cette étude perfectible
- STAPLE et MV semblent donner les performances optimales pour la majorité des lésions considérées dans cette étude
 - Mais le "gold standard" utilisé dans cette étude perfectible
- Les approches STAPLE et MV donnent des résultats (en terme d'estimation de volume) similaires
 - Confirmation de l'équivalence entre STAPLE et MV avec nombre de lésions plus important (Schaefer et al, Eur J Nucl Med Mol Imaging 2016)

- STAPLE et MV semblent pouvoir être utilisées quelque soit le nombre de méthodes de segmentation en entrée
 - Mais le "gold standard" utilisé dans cette étude perfectible
- STAPLE et MV semblent donner les performances optimales pour la majorité des lésions considérées dans cette étude
 - Mais le "gold standard" utilisé dans cette étude perfectible
- Les approches STAPLE et MV donnent des résultats (en terme d'estimation de volume) similaires
 - Confirmation de l'équivalence entre STAPLE et MV avec nombre de lésions plus important (Schaefer et al, Eur J Nucl Med Mol Imaging 2016)
- Approches par consensus devraient être choisies en l'absence de méthodes plus évoluées (Lapuyade-Lahorgue et al, Med Phys 2015 : Hatt et al, Med Phys 2017)

Merci!

© arvaot @ http://www.windsurfbreizh22.com

JFMN 2017 - 12/12